复星医药CEO:阿兹夫定已覆盖全国主要医疗机构,全力保供满足需求******
“我们希望让每一个需要的患者都能用得到阿兹夫定,现在复星医药正在工信部的统一协调部署下,全力以赴保障生产和供应。”
1月11日,上海市人大代表、上海复星医药(集团)股份有限公司CEO文德镛在上海两会现场接受澎湃新闻记者独家采访时介绍,目前新冠抗病毒药物阿兹夫定片(以下简称:阿兹夫定)已在全国31个省、自治区、直辖市完成医保挂网,挂网价格为270元/瓶(每瓶35片,每片1mg),已覆盖全国各地主要医疗机构,包括二级以上医院和基层医疗卫生机构等。同时,阿兹夫定已开通互联网医院问诊处方平台渠道,方便百姓就医用药。
“之所以确定阿兹夫定270元的单价,是考虑到两个原则:便民性和可负担性,包括国家医保的可负担性。”文德镛表示。
调整内部产能,阿兹夫定保供成“一号任务”
公开资料显示,阿兹夫定由复星医药与河南真实生物战略合作开发,是中国首个拥有完全自主知识产权治疗新冠病毒感染的小分子口服药,于2022年7月25日获国家药监局附条件批准。2022年8月9日,国家卫生健康委办公厅、国家中医药局办公室将阿兹夫定片纳入《新型冠状病毒肺炎诊疗方案(第九版)》,今年1月6日阿兹夫定再次被纳入第十版《新型冠状病毒感染诊疗方案》。参保患者使用该药时医保基金可按规定予以支付。
文德镛表示,在工信部的统一领导和指挥下,复星医药参与阿兹夫定的供应端原料、包材、辅料、生产场地等生产全过程,协调集团内部产能,同时也联合央企华润集团和真实生物,与河南当地的生产企业共同保证整体产能供应。
面对春节可能迎来的用药高峰,如何保障阿兹夫定供应?
文德镛告诉澎湃新闻记者,目前阿兹夫定保供已成为集团内部“一号任务”,包括生产负责人、质量人员、供应链人员等均被抽调到一线,确保阿兹夫定的产品供应能在第一时间满足需求。
除此之外,保障用药安全也是复星医药的首要目标。文德镛介绍,作为国内首个治疗新冠病毒感染的小分子口服药,阿兹夫定已经在菲律宾等国家开展暴露后预防新冠感染临床试验,在全国各地也开展了多个上市后的真实数据研究。阿兹夫定的多个国内外临床研究结果也证明了其抗新冠病毒的疗效和安全性。
他向记者透露,2019年复星医药高层曾经开过一个董事会,讨论在疫情发生后,集团有哪些能够做的事情。“我们想到的第一件事,就是充分利用复星的国际化能力和优势把全球的防疫物资协调到中国来,确保中国抗疫物资供应充足。当时我们就想到了布局疫苗,小分子和大分子药物。”
此前1月8日晚,国家医保局发布消息,国家医疗保障局医药管理司负责人介绍,“今年,共有阿兹夫定片、奈玛特韦片/利托那韦片组合包装、清肺排毒颗粒3种新冠治疗药品通过企业自主申报、形式审查、专家评审等程序,参与谈判。其中,阿兹夫定片、清肺排毒颗粒谈判成功,Paxlovid因生产企业辉瑞投资有限公司报价高未能成功。”
据澎湃新闻此前报道。1月3日,阿兹夫定供应终端已覆盖上海二、三级医院115家,已准入社区医院113家。该小分子药物的可及性进一步提升,患者将可就近在社区经医生问诊、评估后开具相应处方。
建议养老机构加快储备新冠药物,鼓励领军药企共建临床研究中心
今年上海两会,针对医疗领域痛点、难点,文德镛带来两份建议。
其一是关于为本市老年人群体储备新冠抗病毒药物的建议。文德镛表示,防疫政策全面调整后,对老年人的保护成为新的防控重心。随着老年人感染新冠的几率大幅上升,特别是在养老院等老年人集中的场所,如果不及时阻断病毒的传染,极易造成集体性感染和二次感染,大大增加老年人的重症率和死亡风险。
他建议,政府向养老机构、社区卫生服务中心、工作单位(例如环卫公司、保安公司等)所在街道卫生院加快储备新冠抗病毒药物,确保老年人在感染后能够第一时间用药,及时阻断病毒在体内复制,避免重症发生。
其二是关于鼓励领军药企共建临床研究中心的建议。文德镛认为,建设具有国际领先水平的临床研究中心是一个长期且具有挑战的系统工程,仅仅依靠国家的拨款和医院的独立运营难以保障高水平的成果产出,建议政府鼓励社会力量参与共建,特别是具备综合实力的医药领军企业。
“领军企业具备强大的造血功能和资金运作能力,一些企业还拥有自己的基金会,能够在研发投入方面持续注入;其次领军企业具备强大的人才体系,一些企业拥有自己的控股、参股医院,不乏学术带头人、专家等顶级科研人才,便于人才资源共享、优势互补,开展具有世界领先水平的临床研究,真正做到以市场为导向的创新成果转化。”文德镛表示。
诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
(文图:赵筱尘 巫邓炎)